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The relation between the macroscopic theory of dense ferrofluids and the microscopic theory of dilute
ferrofluids is discussed. It is shown that the dense and dilute regimes must be carefully distinguished. Shlio-
mis’s approximate theory for dilute ferrofluids does not apply in the dense regime, and has limited validity in
the dilute regime.
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I. DYNAMICS OF FERROFLUIDS

In his Comment@1# on my paper@2# Shliomis does not
recognize that the dynamics of ferrofluids must be descri
by different methods in different regimes of density. My p
per was concerned with dense ferrofluids. In the dense
gime the suspended ferromagnetic particles interact stro
by direct and hydrodynamic interactions. On a slow tim
cale, macroscopic behavior of the suspension may be
scribed by Maxwell’s equations of magnetostatics, therm
dynamics, and an extension of hydrodynamics. T
thermodynamic equation of state and the transport co
cients of hydrodynamics are difficult to calculate, and m
be obtained from experiment or computer simulation. On
other hand, at sufficiently low density interactions betwe
particles can be neglected. The particles perform individ
Brownian motion of position and orientation. On the slo
timescale of diffusion particle inertia can be neglected. S
tistically the system is described by a single-particle dis
bution function. If the spatial distribution in a volume el
ment is uniform, it suffices to consider the orientation
distribution function. Its time evolution is governed by
Smoluchowski equation, called Fokker-Planck equation
Shliomis @1#.

Shliomis claims that the relaxation of magnetization o
dense suspension can be described by his Eq.~26!, derived
from an effective field approximation to the Smoluchows
equation, and that the macroscopic equation~26! guarantees
a correct description of magnetization processes even
large deviations from equilibrium. I take issue with bo
claims. First, there is no guarantee that an equation der
as an approximation for the dilute regime has any validity
the dense regime. Second, in the dilute regime it is neces
to consider the full distribution function, and a relaxatio
equation for the magnetization can only be approximate.
occasion, the equation may describe the time dependen
the magnetization fairly well, but it can also be substantia
wrong.

The situation is somewhat analogous to the theory
gases. Flow phenomena of a Knudsen gas must be desc
by the full single-particle distribution function. For a den
fluid one uses thermodynamics and hydrodynamic equat
with phenomenological transport coefficients that are di
cult to calculate from microscopic theory.
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II. MACROSCOPIC THEORY

Within the framework of macroscopic theory Kroh and
derived an expression for the rate of entropy production c
sistent with Maxwell’s equations, equilibrium thermodynam
ics, and hydrodynamics@3#. With the expression firmly es
tablished, it is natural to explore the consequences of
corresponding phenomenological relaxation equation for
simplest case of a variable-independent relaxation time.
equation had been proposed earlier on more intuit
grounds@4,5#.

In the following I indicate Shliomis’ equations@1# by a
prefix S, and the equations of my paper@2# by a prefixF.
Since Shliomis in Eq.~S10! quotes my Eq.~F2.15! incor-
rectly, I repeat it here:

]M

]t
1“•~v•M!2V3M5gH~H2Hl !2

1

4z
M3~M3H!.

~1!

First of all, I did not assume“•v50. Second, I did not
replace the vortex viscosityz by 3

2 hf, an expression valid
only for dilute ferrofluids. Third, I did not callHl the ‘‘local
field,’’ as Shliomis does in his Discussion in Ref.@1#. The
subscriptl stands for ‘‘local equilibrium.’’ The name ‘‘ef-
fective field’’ seems rather less appropriate.

ConstantgH is the simplest possible behavior, but is n
required by irreversible thermodynamics. Following Land
and Khalatnikov@6#, Shliomis assumes constantgH below
Eq. ~S11!. His thermodynamic potentialF(M) reads in my
notation, cf. Eq.~F2.12!,

F~M!5w~M !2M•H, ~2!

whereH is the local Maxwell field. At the equilibrium poin
M05Meq corresponding toH, the derivative]F/]M van-
ishes, andH equalsHl (M0)5(]w/]M)0. From Eq.~F2.11!
one finds the derivative]w/]M5MC(M ), and Eq.~F2.9!
can be expressed as

H2Hl 52S ]2F

]M2D
0

•~M2M0!1O„~M2M0!2
…. ~3!

Note that (]2F/]M2)0 is a second-rank tensor that is n
proportional to the unit tensor, so Shliomis’ Eq.~S11! does
©2001 The American Physical Society02-1
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COMMENTS PHYSICAL REVIEW E 64 063502
not turn into Eq.~S7!, even for small deviations from equ
librium, and Eq.~S13! is wrong.

Thus Shliomis’ Eq.~S7! with constantt, as formulated
originally @8#, is not corroborated by irreversible thermod
namics in an obvious way. On the other hand, sinceHl

5]w/]M by definition, his Eq.~S11! with constantg turns
into Eq. ~1! with constantgH5g.

As noted above, the assumption thatgH is a constant
adopts the simplest possibility, but is not a necessary co
quence of irreversible thermodynamics. However, Einst
argued the assumption in his second paper on Brownian
tion @7#. Einstein called the coefficientgH for general mac-
roscopic variablea the ‘‘mobility of the system in respect to
a,’’ and extended the relaxation equation to a diffusion eq
tion. The assumption of constant mobility is often made, a
it is part of Landau theory@6,9#. It is also part of the genera
formulation of irreversible thermodynamics of Onsager a
Machlup @10#. It is the first statement in Becker’s treatme
of the subject@11#, and it is commonly made in the theory o
dynamical critical phenomena@12#. It has been shown by
Meixner @13# that it can serve as a basis for the derivation
various ‘‘kinetic’’ equations for the motion in an ‘‘interna
coordinate space.’’ Various examples are treated in the b
of de Groot and Mazur@14#. In particular, it is noteworthy
that the Smoluchowski equation for the orientational dis
bution function of a dilute dipolar suspension has been
rived by Prigogine and Mazur@15# in this manner. They also
proposed a generalization of the equation to higher den
For a recent discussion on the relaxation equation with c
stant mobility see Adelman and Ravi@16#, who ascribe the
theory to Onsager@10#, rather than Einstein@7#.

Shliomis claims that the relaxation termgH(H2Hl ) with
constantgH in Eq. ~1! is wrong. However, his claim is base
on a comparison with results for dilute suspensions. As
gued above, the macroscopic theory is not designed for
lute suspensions.

At the beginning of his Sec. III, Shliomis states that t
phenomenological methods allow one to obtain only lin
relaxation laws. The Einstein theory equation Eq.~S11! is
clearly nonlinear. Conversely, if the linear relaxation beh
ior is known at each equilibrium point, then the fiel
dependence of the relaxation time can be deduced, and
can formulate the nonlinear relaxation equation for large
viations. Shliomis suggests that in nonlinear situations
relaxation equation~S26!, derived from Brownian motion
theory for dilute suspensions, should be used. This igno
again the fact that dense suspensions are qualitatively di
ent from dilute ones.

At the end of his Sec. 4, Shliomis proposes yet anot
relaxation equation, Eq.~S34!. His starting point above Eq
~S33! ignores the tenet of irreversible thermodynamics t
on the left-hand side of a phenomenological rate equation
rate of change of an extensive or additive variable sho
appear@10,17,18#. It was argued already by Onsager@19#
that the right-hand side should be expressed in terms of t
modynamic forces. Thus the canonical form isȧi
5Fi($Xj%), where$ai% are additive variables, and$Xj% the
conjugate thermodynamic forces. The use of additive v
06350
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ables on the left is essential in the derivation of the equa
from statistical foundations@20–22#. Thus Eq.~S34! does
not seem plausible. Its agreement with Eq.~S9! for small
departures from equilibrium does not make it more so.

Thus I maintain that for dense ferrofluids Eq.~F2.15! with
constantgH is a plausible conjecture, worth exploring. Th
actual variation of the transport coefficient, and its possi
extension to a tensor property, must be found from exp
ment or computer simulation.

One of the goals of my paper was to investigate how
modified relaxation equation affects the field dependence
magnetoviscosity. Its second goal was to show that the c
ventional calculation of magnetoviscosity, as proposed
Shliomis @8#, is not correct for dense suspensions. It is n
essary to take collective interactions into account via M
well’s equations. The grouping of terms carried out by Shl
mis @1# following Eq. ~S15! is misleading. It suggests tha
one is dealing with a modification of the transport coefficie
viscosity. Moreover, it suggests that the magnetovisco
derives from an antisymmetric stress tensor@23#. In planar
Couette flow both curl (M3H) and the Kelvin force density
(M•“)H vanish. In Poiseuille flow with applied field alon
the tube both differ from zero. Actually, the contribution
magnetoviscosity under consideration is only an appa
viscosity. It is merely a way of expressing the effect of t
magnetic forces and torques on the flow of the suspens
Note that the resulting magnetic force density is the div
gence of a symmetric stress tensor, the sum ofTa andTm in
Rosensweig’s notation@23#. A second contribution to mag
netoviscosity comes from the influence of the magnetic fi
on the average hydrodynamic stress tensor via the mi
structure of the suspension. This contribution is a genu
local transport coefficient. It vanishes for a dilute suspens
of spherical particles.

It remains to discuss the limiting value of magnetovisco
ity at high field. As shown in Eq.~F7.5!, the relaxation equa-
tion ~1! with constantgH leads to a valueh r(`) less thanz,
whereas Shliomis’ relaxation equation leads to the va
3
2 hf, the value of the vortex viscosityz for low volume
fraction. His argument why this must be so on the basis
Eq. ~S5! is incorrect. As shown in an earlier paper with Kro
@24#, one should regard Eq.~F2.14! as a means of calculatin
the average angular velocity of particles from the kno
vorticity, magnetization, and magnetic field. In the fast ro
tional relaxation approximation, the mean angular veloc
becomes a dependent variable. Logically one is not allow
to fix its value. The limiting value of the magnetoviscosi
must be obtained from the equations forv, M, and H, in-
cluding the relaxation equation. A different relaxation equ
tion can yield a different value.

III. MICROSCOPIC THEORY

For an explanation of the dynamics of dilute ferrofluids
microscopic theory is required. Since interactions can be
glected, it suffices to consider a single particle. A first theo
based on hydrodynamics and magnetostatics, but omit
the effect of Brownian motion, was constructed by Hall a
Busenberg@25#. They used an incorrect expression for t
2-2
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COMMENTS PHYSICAL REVIEW E 64 063502
entropy production, cf. Eq.~F2.16!, and their result for the
magnetoviscosity is correct only in the high-field lim
h r(`)5 3

2 hf. The reason why the limiting value is correct
evident from Eq.~F6.1!.

It is preferable to calculate the magnetoviscosity from
stress tensor@2#, rather than from the entropy production. F
Poiseuille or planar Couette flow with applied field paral
to the tube or the plates, one can argue@2# that it suffices to
evaluate the transverse component of the magnetization.
effect of Brownian motion was studied independently
Shliomis @8# and by Brenner and Weissman@26#. In the
theory of Shliomis the effect was included via the relaxat
equation Eq.~S7!. Brenner and Weissman solved the stea
state Smoluchowski equation for the orientational distrib
tion function numerically for a variety of flow situations. A
similar numerical scheme was proposed by Leviet al. @27#.
Martsenyuket al. @28# used the Smoluchowski equation
derive an approximate magnetic relaxation equation,
hence found Eq.~S30!. Incidentally, the limiting value
h r(`)5 3

2 hf follows straightforwardly from the behavior o
the steady-state orientational distribution function at h
field.

Recently I have shown that for a dilute suspension
magnetoviscosity can be evaluated exactly from a sim
scheme@29#. Considering the case of Poiseuille flow wi
applied magnetic fieldH0 along the axis of the tube we fin
from Eq. ~F5.6! Dh i5

1
2 QiBeq , whereQi5mr /(2V), with

mr the component of magnetization transverse to the t
axis. This can be calculated to first order in the vorticity fro
the Smoluchowski equation for the orientational distributi
function. For a dilute suspension the equilibrium magne
inductionBeq may be replaced byH0. The value1

2 QiH0 may
be compared with the expressions forh r given by Eqs.~S14!
and ~S30! found from the approximations of Shliomis@8#
and Martsenyuket al. @28#. In Fig. 1 we plot the exact result
as well as the two approximate expressions, as a functio
j. In Fig. 2 we plot the ratio of the two approximate expre
sions to the exact result. This shows that the approxim
result of Martsenyuket al. @28# is quite good, but that Shlio
mis’ result @8# deviates up to 17%.

FIG. 1. Plot of the reduced magnetoviscosityDh i /h r(`) of a
dilute ferrofluid, as a function of the variablej5mH0 /kBT as cal-
culated from the exact solution for the orientational distributi
function ~solid curve!, from Shliomis’ approximation@8# ~long
dashes!, and from the approximation of Martsenyuket al. @28#
~short dashes!.
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At the end of his Sec. 3, Shliomis comments on my so
tion of the Smoluchowski equation@29#. Contrary to his sug-
gestion, the method used leads to rapid convergence to
exact result. I did not ‘‘forget’’ to mention the result of Re
@2#. There is no point in the comparison, since the relaxat
equation~1! cannot be used in the dilute regime, as explain
at length above.

For a dilute suspension the behavior of the magnetiza
after a sudden change of field can also be calculated exa
@30,31#. The result can be compared with the approxim
relaxation equations~S9! and ~S26!. If the final field van-
ishes, then the decay is exponential for arbitrary value of
initial field, and this is reproduced precisely by both appro
mate equations. If the initial field is suddenly reversed, th
the decay is more complicated. For initial fieldj515 the
mean relaxation time, calculated from the integral of the
laxation function

G1~ t !5
M ~ t !/Ms1L~j!

2L~j!
, ~4!

is tM50.2309t. The approximate Eq.~S9! yields tM5t,
and Eq.~S26! yields tM50.2406t. At t51.5tM the exact
relaxation function equals 0.186, and the approximate re
ation function found from Eq.~S26! equals 0.220, overesti
mating the exact value by 18.5%.

The above-mentioned results of the microscopic the
show that for dilute ferrofluids approximate relaxation equ
tions for the magnetization must be used with caution. In a
case, it is preferable to solve the Smoluchowski equation
the distribution function. How a calculation valid for the d
lute regime can be extended into the dense regime rema
difficult question. It is not clear at which density and
which timescale the microscopic theory can be replaced
the macroscopic one. The calculation of transport coe
cients occurring in the macroscopic equations for de
suspensions from the microscopic foundations remain
challenge.

FIG. 2. Ratio of the approximate result of Shliomis@8# for the
magnetoviscosityDh i to the exact value as a function ofj ~long
dashes!. Similarly the ratio of the approximate result of Martsenyu
et al. @28# to the exact value~solid curve!.
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